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Middle Atmosphere Composition Revealed by Satellite Observations

by

James M. Russell III I, Susan Solomon 2, M. P. McCormick 1

A. J. Miller 3, J. J. Barnett _, R. L. Jones 6, and D. W. Rusch 5

Introduction

A significant step forward has occurred in middle atmosphere studies with

the launches of the Nimbus 7, Atmospheric Explorer I! tAmM--TT_,L__, Solar

Mesospheric Explorer (SME), and Earth Radiation Budget (ERBS) satellites.

These flights, coupled with earlier Nimbus missions, now provide a good data

base for scientific investigation of photochemistry, dynamics, and radiation

processes and for study of coupling among these processes and between solar

variations and the atmosphere. The earlier flight of the Backscatter

Ultraviolet (BUV) instrument on Nimbus 4 and the flight of the Solar

Backscatter Ultraviolet (SBUV) experiment on Nimbus 7 has provided data for

study of long-term ozone trends and their relation to solar flux. In

addition, for the first time, a comprehensive near-global data base on the odd

nitrogen (NOx) chemistry is available from the Nimbus 7 Limb Infrared

Monitor of the Stratosphere (LIMS) experiment, the Stratospheric and

Mesospheric Sounder (SAMS), the Solar Mesosphere Explorer (SME), and the AEM

II Stratospheric Aerosol and Gas Experiment (SAGE) which collectively provided

data on vertical profiles of temperature, 03, NO2, N20 , HN03, H20 , CH_, CO,

and aerosols. In addition, the SAGE II experiment on the ERBS is now

collecting data on ozone, NO2, H20 , and aerosols. These data will be

available in the future after the validation period is over. No global data

exist at present on the odd chlorine (C£ x) and odd hydrogen (HOx)

chemistry although important information has been obtained on the HO x source

molecules CH_ and H20 by SAMS and LIMS, respectively. The odd chlorine

chemistry is one focus of the Upper Atmosphere Research Satellite (UARS) to be

launched near the end of this decade. UARS will also provide the first

opportunity for simultaneous global observation of two chemical families

(NO x and C£x).

Much of the data collected has been reduced and archived, and a number of

scientific studies have been conducted. Data from Nimbus 7 that have been

archived at the National Space Sciences Data Center (NSSDC) includes I year of

1NASA Langley Research Center, Hampton, Virginia

2NOAA, Environmental Research Laboratory, Boulder, Colorado

3NOAA, National Weather Service, Washington, D.C.

%Oxford University, Oxford, England

5U. of Colorado, Laboratory for Atmospheric and Space Physics, Boulder,

Colorado

6British Meteorological Office, Braeknell, England. Work performed while at

Oxford University.



SBUVresults, 2 yearsof SAMStemperature,N20,andCH4 results, all 7 months
of LIMSdata (temperature,03, NO2,HNO3,andH20),and4 yearsof aerosol
data fromthe StratosphericAerosolMeasurementII (SAMII). All 3yearsof
aerosol,03, andNO2 datafromthe SAGEexperimentlaunchedin February1979
havebeenarchlvedashave1yearof data (1982)fromSMElaunchedOctober6,
1981. TheSMEdataincludessolar flux in the II00 Aregionandvertical
profiles of 03, NO2,andtemperature.Daily averaged03is available fromSME
in 5° latitude bins for the pressurerange0.002mbto = 30mbin the first 3
monthsand= 0.002mbto ! mbin the remainderof the year. NO2dataare
availablein the 2 mbto 30mbrangefor the first 3 monthsonly. After that
time, eruptionof the E1ChichonVolcanocausedanatmosphericaerosolloading
that swampedor severelycontaminatedthe signal. BeginningApril 1982,SME
provideddataonthe spatial extentandvariability of the volcaniccloud.
Datareductionis continuingfor later yearsof themission. Forthe first
time, thedatabaseexists to addressmanyof the keymiddleatmosphere
questionsoutlinedin TableI. A summaryof investigationsandfindings from
all thesemissionsis includedin the followingparagraphs.

Severalgeneralfeaturesof the upperatmospherehaveemergedfromthe
dataanalysesconductedthusfar. It is clear fromLIMS,SAGE,andSMEdata
that NO2exhibits rapid latitudinal variations in winter andshowshemispheric
asymmetrywith generallyhighervertical columnamountin the summer
hemisphere.It also appearsthat southernsummervaluesaregreaterthan
mixingratios in the northernsummerpresumbablybecauseof differencesin the
circulation patterns. LIMSHNO3datashowthat this gasis highly variable

TABLE1 - KEYMIDDLEATMOSPHEREQUESTIONS

• WHATARETHEGLOBALDISTRIBUTIONSOFKEYCONSTITUENTS?

• WHATARETHEDALLYANDSEASONALCHANGESINTHESECONSTITUENTS?

• HOWDRYIS THESTRATOSPHERE?IS THEREA HYGROPAUSE?

• ISMETHANEOXIDATIONANIMPORTANTSTRATOSPHERICH20SOURCE?
• HOWAREWATERVAPORANDOTHERCONSTITUENTSTRANSPORTEDINTOANDOUTOFTHE

UPPERATMOSPHERE?

• WHATISTHEREASONFORTHESTEEPNO2DECREASEWITHINCREASINGLATITUDEIN
WINTER?

• IS THETHERMOSPHERE/MESOSPHEREA NOX SOURCEORSINKFORTHESTRATOSPHERE?

• WHATARETHEGLOBALBUDGETSOFNOXANDH20?

• IS THEREA POLARNIGHTNOX STORAGEMECHANISM,ANDIF SO,WHATIS IT?



with both latitude and season. The mixing ratio is smallest in the Tropics

and largest in the winter hemisphere at high latitudes. The data also show

that 03, NO2, and HNO 3 levels are strongly affected during a major

stratospheric warming event. The results demonstrate for example, that 0 3

tends to propagate downward in altitude during a high latitude warming

situation, NO 2 latitudinal gradients are greatly reduced, and the HNO 3 high

latitude longitudinal gradients are diminished. LIMS has also provided the

first detailed view of the global water distribution. There is a persistently

low mixing ratio of about - 3 ppmv in the tropical lower stratosphere, a

poleward gradient at all times during the mission, and evidence of increasing

mixing ratio with altitude at tropical and mid-latitudes. Perhaps even more

interesting is the picture of the general two-dimensional stratospheric

circulation suggested by the data. The strongest circulation appears to be

toward the winter pole at high altitudes as theory would predict and there is

evidence of lower altitude stratospheric transport toward the summer pole.

This picture is reinforced in CH_ and N20 data from the SAMS experiment which

shows mixing ratio enhancements or depressions that tend to coincide with

areas _ho_o _he L!MS H20 would °,,_o_ _n.g _ weak _,,1_n.s.

In other studies using SME data, results show that ozone density in the

mesosphere changes from day to day and with the seasons (Barth et al., 1983).

The largest variations appear to be temperature induced. Ozone density and

temperature are inversely related, i.e., when temperatures are high, ozone

levels are low and vice versa. This dependence is also seen in seasonal

patterns and orbit-to-orblt variations. In the lower mesosphere (I-0. I mb),

maximum mesospheric ozone occurs in the winter hemisphere and the variations

are greater in winter than in summer (Thomas et al., 1983). Ozone time series

from SME for 45°S show greater variability in Southern Hemisphere winter and

less in summer. In the upper mesosphere (near 0.01 mb), a systematic

semiannual cycle is observed, with maximum 03 occurring at the equinoxes.

This interesting feature probably reflects the influence of breaking small

scale gravity waves, and shows the important role of mesospheric transport

processes (Thomas et al., 1984; Garcla and Solomon, 1985). Comparison of

ozone levels with the latest model calculations at I mb and 0. I mb show

observations by SME to be higher by I0 percent to 30 percent. This is the

case for all other satellite results as well.

Perhaps one of the most exciting results to date from SME is the

measurement of ozone during a solar proton event in July 1982 (Thomas et al.,

1983). The ozone levels were observed to decrease by up to 60 percent at 76

km and 70°N latitude. These changes are well outside the natural variability

observed by SME prior to and after that time. Solomon et al. (1983a) have

carried out coupled ion-neutral chemistry I-D model calculations (time scales

are short so transport effects can be neglected) and obtain good agreement

with the observed 03 depletion. A similar event was observed previously by

the Backscatter Ultraviolet (BUV) experiment on Nimbus 4 (Heath et al., 1977).

The primary cause for this effect is believed to be production of odd hydrogen

(H+OH+HO 2) which catalytically destroys ozone. The proton flux leading to

ionization rates used in the calculations was measured by instrumentation on

the NOAA-6 satellite.

There have also been several investigations published or submitted for

publication which show great potential for using existing data to calculate

the mixing ratios of some gases not measured directly. Pyle et al. (1983)



showeda calculationof the hydroxylradical (OH)altitude versuslatitude
distribution usingLIMSNO2 andHNO3 data which qualitatively compares well

with theory. Similarly, Solomon et al. (1983b) have used SME NO 2 results to

infer an N205 latitudinal distribution. More recently, Callls et al. (1986)

conducted studies using LIMS and SAMS data to infer altitude versus latitude

cross sections of O(3p), O(ID), OH, H02, H202, NO, NO3, N205, HNO_, total odd

nitrogen, and total odd hydrogen.

The purpose of thls paper is to provide a collection of satellite results

obtained to date in the form of monthly zonal mean cross sections and polar

stereographlc projections, to provide a description of the data and their

limitations, and to point out salient features of the morphology of

constituent distributions. An overview of measurements, latitude coverage,

altitude coverage, vertical resolution, accuracy, and precision is provided in

Table 2. It is intended that this paper be a convenient reference document

for use in comparing observations wlth two-dimenslonal model results and for

crude checks of three-dlmenslonal models. These data also provide improved

background information for chemical and dynamical studies. The data period

presented wlll cover the first year after the Nimbus 7 launch and the first

12 months of SME data. The focus of the results is on minor constituents.

Ozone and temperature results are included since both are needed in

photochemical studies; however, detailed discussion of these variables is not

presented since these will be discussed in three concurrent activities

sponsored by COSPAR and MAP. These efforts include generation of a COSPAR

International Reference Atmosphere (CIRA) for ozone, the MAP project--OZMAP,

to analyze variability, and the Pre-MAP Project, PMP-I, to intercompare

satellite and in situ temperature results (Rodgers, 1984; Grose and Rodgers,

1986). The next section of thls paper provides a brief description of each

experiment including instrument description, measurement approach, altitude

range, vertical resolution, latitude coverage, data accuracy, and data

precision.

This section is followed by a description of the data highlighting significant

features.

Experiment Descriptions

Llmb Infrared Monitor of the Stratosphere (LIMS)

The LIMS experiment used a thermal infrared llmb scanning radiometer wlth

slx channels centered at wavelengths ranging from 6.2 _m to 15.0 _m _ee

Russell and Gllle (1978), Gille et al. (1980), Gille and Russell (1984) and

Russell, 1984)]. The experiment was turned on in orbit on October 24, 1978,

and it operated nearly flawlessly for the planned 7-I/2 month lifetime until

Hay 28, 1979, measuring vertical radiance profiles across the atmospheric llmb

of the Earth. These profiles were later processed on the ground to infer

middle atmosphere temperature profiles and the concentrations of key compounds

believed to be important In the stratospheric ozone photochemistry. The

experiment lifetime was limited by the NH 3 - CH_ solid cryogen cooler used to

cool the six HgCdTe-detectors to a temperature of 64°K. The six channels

included two In the 15 pm CO 2 band for two color temperature-pressure sensing,

and others at 11.3 _m for nitric acld (HNO 3) retrieval, 9.6 _ for ozone (03) ,

6.9 pm for water vapor (H20) , and 6.2 _m for nitrogen dioxide (NO 2)" The

standard approach for thermal infrared remote sensing was used. First, by
measuring emission in the band of a gas whose mixing ratio is known (i.e.,



TABLE2 - MIDDLEATMOSPHERECOMPOSITIONMEASUREMENTSANDCOVERAGE

EXPERIMENT

LIMS

CONSTITUENT

03
NO2
H20

HNO 3

MEAS.

RANGE (KM)

10-65

10-50

10-50

10-50

SAMS CH_

N20

CO

SAGE/ 03

SAM II NO 2

28-52

28-58

45-100

10-50

25-45

SME

SBUV

aerosols

03

NO 2

03

10-35

50-90

20-40

25-55

ACC.*

(z)

±15-40

±20-50

±18-36

±17-45

±17-50

±20-50

-57+130

± 6-40

± 30

± 5-20

± 8-50

±20-60

± 7-9

PREC.

(z)

3-15

6-20

25

5-40

I0

5

6-20

2-25

VERT.

KS.

(_)

2.8

5

5

2.8

>8

>8

>8

1

3

I

3.5

3.5

8

LATITUDE

COVERAGE

64°S-84°N

50°S-70°N**

80°S-80°N (SAGE)

640-80 ° N & S

(SAM rI)

84°S-85°N

(SUNLIT PORTION)

80°S-80°N

(SUNLIT PORTION)

*Root Sum Square of Systematic and Random Errors

*eCO data are averaged over 6-month time period and 35 ° wide latitude bands

COLLECTIVE LIST - O3, NO2, N20 , HN03, CH_, H20 , CO, and AEROSOLS I

CO2) , the temperature profile was inferred and then by measuring emission in

other bands, the unknown mixing ratios were retrieved. Since the observed

parameter was horizon thermal emission, data were collected both night and day

providing a data base for diurnal change investigations to be conducted and

allowing the high latitude polar night reglon of the Northern Hemisphere to be

sounded. This region of the globe has been of particular interest recently

because of questions and theories that have arisen concerning storage of NO x

compounds in the polar night, the possibility of a high altitude polar night

source of NO x for tile stratosphere, build-up of water vapor at low altitudes,

and mesospheric ozone increases with time. The LIMS measurements were made nearly

continuously during the mission with a duty cycle of Ii days on and 1 day off.



TheLIMSradiometerscannedthe atmospherichorizonvertically onceevery
12seconds(- 84kmalongthegroundtrack) obtainingradianceprofiles in
eachof six spectralbandsas a functionof tangentheight (H). Tangent
height is definedas the point of closestapproachof a ray pathto the
Earth's surface(Fig. I). Theinstrumentviewdirection was33.5° east of the

negative spacecraft velocity vector so as to provide uniform coverage (Fig. 2)

in the Northern l_misphere for the - 99.3 ° orbital Sun synchronoous

inclination. _e geometry provided daily coverage from 64°S to 84°N. The

upward and downward arrows in Fig. 2 denote ascending (generally daytime data)

and descending (generally nighttime data) nodes for the 14 orbits which

occurred each day. The repeat cycle over a given latitude and longitude was

6 days. The altitude coverage varied for each channel depending mostly on

signal-to-nolse (S/N). rite range for temperature and ozone was _ I0 km to

65 km, and for NO2, HN03, and H20 it was _ 10 km to 50 km. The lower altitude

limit varied with latitude being highest in the Tropics due to interference by

high clouds and lowest in the high latitudes. Also, at certain times, mostly

in the high latitude deep winter period, the slgnal-to-nolse (S/N) became too

low in the NO 2 and H20 channels for certain regions where the temperatures

were cold. This comment applies mostly to latitudes greater than about 60°N

and for pressures greater than about I0 mb. The vertical resolution of the

measurements was - 2.5 km in the temperature channels, 2.8 km in the O 3 and

HNO 3 channels, and _ 5 km for NO 2 and H20. Horizontal resolution is much more

coarse and is dictated by the llmb geometry and atmospheric absorption

characteristics to be - 300 km.

The instrument was subjected to a thorough ground calibration prior to

launch, which included among other things, characterization of noise levels,

field of views, the optical encoder that provided precise relative angular

measurements of radiance points on the horlzo_, and a primary radiometrlc

calibration to the 1 percent accuracy level. Details of these measurements as

well as other tests done on the instrument before launch are presented in

Gille and Russell (1984). The LIMS scan mirror scanned the llmb of the Earth

at a rate of 0.25°/sec starting at an altitude of _ 150 km and scanning down

to a point _ 38 km below the hard horizon. At the top of every other scan (_

FI'.

Figure 1 - LIMS Viewing Geometry.
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every 48 seconds), the detectors viewed radiation from a small cavity

blackbody operating at 308°K. This in-flight calibration (IFC) blackbody

served as a transfer standard to provide nearly continuous updates to the

ground calibration in orbit to insure that any scale factor changes were

accounted for in data reduction. The IFC temperature was stable to a small

fraction of a degree, and the changes in scale factor over the entire mission

were small. These resnlts provided a sound and complete data base to gage

experiment precision and accuracy in orbit.

An extensive program of correlative balloon underflights was carried out

to aid in validation of LIMS data. The intent of the program was to obtain

comparative data under a variety of atmospheric conditions at low, mid, and

high latitudes. The general coincidence criteria were for the LIMS and

correlative data to both occur within 3 hours time and 2 ° great arc distance

from each other. _ese criteria could be met in some cases, but not all.

Temperature data from rockets, for example, could be obtained with even

smaller time and space differences. The extreme was for NO 2 where all data

were collected from balloon remote sensors using the occultation technique.

In this case, the time differences were on the order of 4-I/2 hours.

Comparisons were made with 60 rocket temperature profiles, 14 rocket ozone

profiles, 28 balloon ozone sondes, [3 H20 balloon profiles, 7 NO 2 balloon

profiles, and 14 HNO 3 balloon profiles. Further comparisons have been made

with the Nimbus 7 SAMS temperature results, SBUV ozone data, and SAGE ozone

and NO 2 results.

The validatEon criterion was that the error bars of the correlative and

LIMS data overlap. It is recognized that since the balloon data also have

errors, they cannot be used to assess LIMS accuracy. This was done through

detailed computer simulations using all the systematic error estimates for the



experiment.Measurementprecisionwascalculatedusingcomputersimulations
that includedtheknownexperimentrandomerror componentsaswell as the
orbital data. In usingorbital datato assessprecision, the standard
deviationof six sequentialretrievals (covering± 2° of latitude) aboutthe
six-scanmeanwascalculatedat a seriesof latitudes to obtainanupperlimit
onprecision. This is the worstcasevaluesincetherewill besomecomponent
of variation dueto atmosphericchanges.Theresults of the correlative
measurementcomparisons,accuracycalculations,andprecisionestimatesare
givenin Table3. In all cases,the error barsoverlapfor LIMSand
correlative data. Accuraciesrangefrom< 2°Kin temperatureto I0 to - 20
percentfor gases. Themeasurementprecisionis _ 0.4°Kfor temperatureand
0.15ppbvto 0.25ppmvfor constituents,dependingon the channel. Detailsof
the comparisons,descriptionsof accuracystudies,anddiscussionof methods

TABLE3 - LIMSACCURACY,PRECISION,ANDCORRELATIVECOMPARISONRESULTS

ESTIMATED* CORRElaTIVE ESTIMATED
PARAMETER ACCURACY COMPARISON PRECISION

Temperature <2 K** < 2 K < 0.2°K - 0.6°K

Ozone 16-41% < 10% < 0.25 ppmv

Water Vapor 18-36% < 20% < 0.25 ppmv

Nitric Acid 17-45% 20-50% < 0.15 ppbv

Nitrogen Dioxide 20-50% < 20% < 0.25 ppbv

*Range is Variation over Altitude

**For Pressure > I mb

for estimating precision are presented in a series of LIMS validation papers.

[Remsberg et al. (1984a), Russell et al. (1984a, b), and Gille et al. (1984a,

b)]. The mapping procedure and discussions of the maps are included in papers

by Haggard et al. (1986a, b) and Remsberg et al., 1986.

Stratospheric and Mesospheric Sounder (SAMS)

The SAMS instrument is a multichannel limb scanninng infrared radiometer

which measured thermal llmb radiances that were ground processed to provide

vertical profiles of atmospheric temperature versus pressure and the mixing

ratios of methane (CH_), nitrous oxide (N20) , and carbon monoxide (CO). The

15 _m CO 2 band was used for temperature and the 1200 cm -I (8.3 m_) to 1340

em- (7.5 _m) spectral region was used for CH_ (9% band) and N20 (_I band)

(e.g. Jones and Pyle, 1984). Carbon monoxide data were obtained using

measurements of resonant fluorescent scattering of sunlight near 4.7 um.

Although data are not yet available, SAMS also had channels for measuring the



vertical mixingratio profiles of water vapor (H20) , and nitric oxide (NO).

Measurements were made using the method of pressure modulation radiometry

(PMR). Energy from the atmospheric CH 4 and N20 bands was passed through two

PMR cells in tandom; one containing CH 4 and the other N20. These cells then

acted as selective optical filters (see Drummond etal., 1980). Temperature

was measured using CO 2 cells. The scanning geometry was the same as for LIMS

(Fig. I) except that the view direction was on the beam of the spacecraft

velocity vector giving a different geographical coverage (Fig. 3). The orbit

configuration and viewing geometry provided latitude coverage from 50°S to

70°N each day.

90°Nf

60°N

LIITITUDE, O-
DEG.

30o.(

60 ° --

9°°_' ow IFso I I I I I I I I I I150°W120°W 90°w 60°W 30%/ 0 30°E 60% 90_E 120°E 150°E 180°E

LONGITUDE, DEG.

Fig. 3 - Typlcal US _11y latltude versus 1ongltude coverage.

The use of a common optical chain and detector foe both the CH 4 and N20

channels meant that these gases could not be observed simultaneously, so the

instrument was set to measure either one or the other gas in time blocks of 1

day. The SAMS duty cycle of 3 days on and I day off meant that each gas was

measured about 12 days per month. The slgnal-to-noise ratios were not

sufficient to measure individual profiles. Therefore, the approach taken was

to zonally average radiance and temperature profiles before retrieval.

Radiances were averaged over I0 ° latitude bands and - 1.4 km in the vertical.

This provided signal-to-nolse ratios of about 30 in the low stratosphere.

The noise level for CO measurement was high, and it was necessary to

average the data over long t[me periods (6 months) and wide latitude bands

(30 ° to 50°). Consequently, the total number of "profiles" obtained was

small. It should be noted that becattse of the geometry of the orbit, the

density of observations is greatest at 50 ° and 70°N. Ms a result, averages

for bands that include this range are biased towards the highest 20 ° of
latitude.
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A statistical methodwasusedto retrieve temperatureandmixingratio
fromthe radiancedata. Details of this methodandthe instrumentcalibration
proceduresarediscussedby Rodgerset al. (1984)andWaleandPeskett(1984),
respectively. Theinstantaneousvertical field of viewwas- 8 kmfor all
channels.Temperaturemeasurementscoveredthe rangefrom_ I0 kmto _ I00
km. Theuseful altitude rangefor monthlyzonalmeancrosssectionsof CH4
includes from 28 km (- 20 mb) to 52 km (- 0.6 mb) and for N20 from 28 km to
about 58 km (- 0.3 mb).

A detailed investigation of the sources of errors in the SAMS CH 4 and N20

observations has been described by Jones and Pyle (1984). They found that

systematic errors in the retrieved CH_ fields fell into four main categories:

uncertainties in the spectroscopy of the primary gases and of any other

overlapping gases (,mainly N20 for the CH4 measurement and vice versa),

instrumental and calibration uncertainties, limitations and simplifications in

the retrieval method and algorithm, and inaccurate knowledge of the

atmospheric state (mainly the temperature structure).

To estimate the impacts of these various systematic error sources, a

synthetic radiance profile was computed using typical mixing ratio and

temperature profiles with all the uncertain parameters set to their nominal

values. The simulated data set was then retrieved _rlth the uncertain

parameters offset in turn to their uncertainty limits, and the profiles thus

obtained were compared each time with the original.

There was a significant random component to the error budget even when

zonal means were considered. The effects of this on the retrieved profiles

were quantified during the retrieval process by means of an error covarlance

matrix. In practice, only the diagonal elements of this matrix are used.

This simplification, which ignores correlations between measurement errors at

different levels of the atmosphere, tends to over estimate the random error at

all levels.

Overall, the most important CH 4 and N20 error sources are thought to be

due to uncertainties in spectroscopy, effects due to retrieval using zonal

radiance averaging and zonally averaged temperatures, and uncertainties in the

llne of sight altitude and atmospheric temperature. According to Jones and

Pyle (1984), the CH 4 measurements appear to be superior to those of N20 over

much of the stratosphere. The estimated CH 4 RSS accuracy is < 20 percent as

compared with 20 to 50 percent for N20. This occurs mainly because of the N20

signal sensitivity to unwanted Doppler shifts and CH 4 interference, and it is

worsened by the more rapid decrease of N20 with increasing altitude. Random

errors or precision is much better and is - 3-15 percent for CH 4 and 6-20

percent for N20 below the 0.6 mb level.

The carbon monoxide signal levels are much lower and, therefore, the

precision (- 25 percent) is worse than for N20 and CH_. Also, the accuracy

(-57 to 130 percent) is considerably worse. There were no simultaneous

correlative measurements of CH 4 and N20 to aid in validation. The

investigators have, however, compared annual mean profiles to the few in sltu

profiles that exist. In general, the SAMS data reproduce the general features

seen by other measurements quite well, i.e., vertical gradients, the low

stratosphere, low latttnde maxima, the essentially linear CH 4 decrease with



ii

altitude, andthe morerapid N20decrease.Thereappearsto bea positive
bias in N20by - 20- 30percentrelative to in situ dataat 30kmandbelow.

Stratospheric Aerosol Measurement II (SAM II)

The SAM II measurement uses the method of solar occultation to provide

vertical profiles of aerosol extinction. The instrument is a single spectral

channel Sun photometer with a passband centered at 1.0-_m. Solar radiation is

reflected by a scan mirror and collected by a Cassegrainlan telescope to

produce an image of the solar disk on the telescope's focal plane. On the

focal plane is a circular aperture that defines a 0.6 arcmin instantaneous

field of view (IFOV). This provides an instantaneous vertical field of view

on the horizon of approximately 0.5-km altitude. Sunlight passing through the

aperture is directed by a lens through a bandpass filter to a silicon

photodiode used for measurement of atmospheric e_tinction.

_m,,,=ux=_e_y before a sa e=11_e= sunrise or _.n_et event_ the SAM II

instrument is activated by a sun-presence sensor indicating that the Sun is

within the instrument's field of view. The instrument then locks onto the Sun

in azimuth and scans in elevation until the Sun is acquired by the IFOV. The

scan mirror then scans vertically, with respect to the Earth's horizon, across

the solar disk at a rate of 15 arcmin per second, reversing the scan direction

each time a Sun edge crossing occurs. The orbit of the Nimbus 7 satellite is

a hlgh-noon Sun-synchronous one, so SAM II performs [4 sunset and 14 sunrise

measurements each day, with all sunsets occurring in the Arctic region and all

sunrises occurring in the Antarctic region. In the course of a single day,

measurements of the stratospheric aerosol will be obtained at 14 points spaced

26 ° apart in longitude in the Northern Hemisphere, and similarly for the

Southern I_mlsphere. All of the points obtained during I day in a given

hemisphere will be at very nearly the same latitude, but as time progresses,

the latitude of the measurements will slowly change with the season from I to

2 degrees per week, gradually sweeping from 64 = to 80 °. During a whole year,

lowest latitude coverage occurs at the solstices, whereas the highest

latitudes are measured at the equinoxes. The orbital viewing geometry and

latitude versus time coverage is shown in Fig. 4.

The basic data product generated from each measurement is an aerosol

extinction profile (extinction as a function of altitude) at 1.0 _m

wavelength. Using a typical size distribution for stratospheric aerosols,

their concentration as a function of altitude, longitude, latitude, and time

can be determined. Since the measurements are confined to high latitudes

(64°-80 °) in both hemispheres, the results have provided the most detailed

data set of stratospheric aerosol behavior ever obtained in the polar regions.

The altitude range for the aerosol extinction profile is typically from

cloud top to approximately 35 km altitude covering all of the stratospheric

aerosol layer in the polar regions. The vertical resolution for the inverted

aerosol extinction profile is one km, with an accuracy of I0 percent and

precision of about 5 percent. The accuracy at higher altitudes (>20 km)

generally decreases due to the lower content of aerosols in that region of the

stratosphere. The S_M II data have been validated by comparing to near

simultaneous measurements by lidar and balloonborne dustsondes. Details of



12

SUN
TANGENT POINT

SATELLITE

%

h-955Km l

MIDSUMMER,
SUNSET PASS

N

9o I I I

80 "" "_ /. _ %%

THULE

70 IIARROW

SONDRESTROtt

•," 6o I I 1 FA,.AH.
EQUATORIAL CROS$1N_ TildE, fir

I 11:A5

12:00

12:15

-em | j I I

_ PALMER

L
-70

SIPLE

-80 McMURO0

-90

0 9O 180 270 ,_60

,_, AUGUST )1, 1978 TIHf. FROM SAN II LAUNCH - DAYS

Figure 4 Latitude Coverage of SAM II Tangent Points For Sun-Synchronous High-Noon Orbit

(Effect of changing equatorial crossing time on tangent location dates is shown by dashed curves)



13

the comparisons have been presented in two of the SAM II validation papers

(Russell et al., 1981a, b).

Stratospheric Aerosol and Gas Experiment (SAGE)

The SAGE measurement is a direct follow-on to SAM II and is also based on

the method of solar occultation. SAGE measures aerosol extinction as well as

vertical profiles of 03 and NO 2.

The SAGE instrument is a four-channel Sun photometer and is very similar

to the SAM II instrument. Spectral discrimination for SAGE is achieved by

using a holographic diffraction grating which disperses the incoming sunlight

in different directions depending on wavelength. By placing four sensors at

appropriate locations along the Rowland circle, one can measure the sunlight

intensity at four different wavelengths. The wavelengths selected are 0.385,

0.45, 0.60, and 1.00 _m. _lese were selected for the following reasons: at

0._o_ n i._ a.._ I._o _m, _hqnrn_Ion hv stratos_herlc gases is quite small

below 25 km, and solar e_tinctlon in these channels is almost entirely due to

scattering by aerosol particles and air molecules. At higher stratospheric

altitudes, attenuation at 0.60 pm is primarily due to ozone. Above an

altitude of about 25 km, the extinction at 0.385 and 0.45 _m is mainly due to

absorption by nitrogen dioxide.

In operation, the instrument is similar to SAM ii, and is activated just

before a sunrise or sunset is encountered by the satellite. The instrument

searches for the Sun and nulls the center of intensity of the solar image. A

scan mirror then begins scanning up and down across the face of the Sun. This

mirror reverses in direction each time a llmb crossing occurs. Solar light is

reflected from the scan mirror to the aperture of a small Cassegralnlan

telescope which defines about a I/2 km instantaneous field of view on the

horizon and focuses this light onto the diffraction grating. The intensity of

light dispersed by the gratlng at the four wavelengths of interest is measured

by the four sensors. The data are inverted in ground processing to yield

extinction as a function of altitude for each spectral channel at each

location and time of a SAGE measurement.

The SAGE instrument was launched on February 18, 1979, on a dedicated

orblt-tailored Applications Explorer Mission (AEM-2) satellite and obtained 34

consecutive months of data. The orbit is inclined at 55 ° with an apogee of

660 km, a perigee of 548 km, and a period of 96.8 minutes. This highly

precessing orbit provided measurement opportunities distributed around the

earth for latitudes from about 80°N to 80°S (depending on season). Unlike the

emission experiments and SBUV, SAGE measurements are made over a wide range of

longitudes but relatively small (< 1 °) latitude ranges each day; generally one

in the Southern }_mlsphere and one in the Northern Hemisphere. Latitude

versus time coverage for the period from launch to December 31, 1980, is shown

in Fig. 5. The measurements were made each time the satellite entered or left

the Earth's shadow, that is, during each sunrise and sunset encountered by the

satellite. Due to the orbital motion of the satellite, the rotation of the

Earth, and the motion of the Earth around the Sun, successive measurements are

separated by about 24 ° in longitude and occurred at slightly different values

of latitude.



14

e

w

F-

_J

80_N

60°N

40°N

20_N

0

20°S

40°S

60°S

80% I

S_GA_SUREMENTI 1 _ _LOCATIONS I : F_

I I I I I I I I I I

N D a F M A M a a A

SAM _ SAGE

LAUNCH LAUNCH

I I I I I

S 0 N D J

1900

- SUNSETS

o SUNRISES

_. FULL SUNLB'E
(NO MEASUREMENT)

Fig. 5 - SAGE latltude versus tlme coverage for 1978 - 1979.

The basic data product generated from each SAGE measurement is an

extinction profile (extinction as a function of altitude) for each of the four

spectral channels. These contain information on the concentrations of

stratospheric aerosols, ozone, and nitrogen dioxide as a function of altitude,

longitude, latitude, and time. A corresponding temperature profile is

provided by the National Meteorological Center (NMC) of the National Oceanic

and Atmospheric Administration (NOAA) for the same time and location of each

SAGE measurement. These profiles were constructed by interpolation from the

NMC grldded global sets and used to convert SAGE derived gas concentrations to

mixing ratios.

The altitude range for the four data products varies due to the

difference in signal level for the four spectral channels. Vertical

resolution for the inverted products is typically 1 km except for the nitrogen

dioxide profile and the aerosol extinction at 0.45 _m, where vertical

smoothing to 3 km has been performed. Table 4 summarizes the altitude range,

vertical resolution, estimated accuracy, and precision of the four SAGE data

products. An extensive program of validation for the SAGE aerosol and ozone

data has been carried out. The comparison of SAGE aerosol data with

L _
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correlative measurements has been reported by Russell et al. (1984) and Yue et

al. (1984). The comparison of SAGE ozone data with balloon ozonesondes,

rocketsondes, and SBUV data has been reported in a series of papers (Reiter

and McCormick, 1982; McCormick et al., 1984, Cunnold et al., 1984).

The Solar Backscatter Ultraviolet (SBUV) Experiment

The SBUV is a nadir-viewing double monochromator which measures radiances

backscattered from the atmosphere at 12 discrete wavelengths from 255 nm to

340 nm with a l-nm bandpass (Heath et al., 1975; McPeters et al., 1984; Fleig

et al., 1982). It is an extension, with modification, of the BUV measurement

TABLE 4 - SAGE ALTITUDE, RANGE, RESOLUTION, ACCURACY, AND PRECISION

DATA

Aerosol Extinction

at 1.0 Bm

Aerosol Extinction

at 0.45 _m

Ozone

Nitrogen Dioxide

ALTITUDE VERTICAL ESTIMATED

RANGE RESOLUTION ACCURACY PRECISION

Cloud Top

to 35 km 1 km 10% 5%

10-35 km 3 km 20% 5%

Cloud Top I km <35 km 5-10% 5%

to 50 km >35 km 20-40%

25-45 km 3 km 30% I0%

system flown on Nimbus 4 (1970-1977). Radiances between 255 nm and 206 nm are

used to infer the ozone vertical profile distribution, while radiances between

312 nm and 340 nm are used to calculate total ozone. In order to calculate

backscattered albedo, the ratio of backscattered radiance to extraterrestrial

solar irradiance must be measured daily by deploying a diffuser plate. The

scan-to-scan precision of the albedo measurement is very high--a few tenths of

a percent.

Inferral of an ozone profile is possible because light at a given

wavelength originates mostly in a llmited-altltude region of the atmosphere,

and this alitude region varies with wavelength. Thus, a wavelength scan is

equivalent to an altitude scan. As sunlight penetrates the atmosphere, the

scattering term increases exponentially with increasing density of air

molecules, but the increasing depth of ozone causes the transmission of direct

and backscattered sunlight to exponentially decrease. The balance between an

exponentially increasing source term and exponentially decreasing transmission

term produces a well-deflned scattering layer of about 14 km half width. The

wavelength of maximum ozone absorption, 255 nm, produces a scattering layer

(contribution function) at the maximum possible altltude--50 km to 55 km,

depending on solar zenith angle. Light at wavelengths longer than 310 nm
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penetratesthe ozonelayer to bescatteredby the troposphereandreflected by
the groundandclouds. Thesewavelengthsareuseful for inferring the total
ozonecontentof the atmosphere.

Theinferral of anozoneprofile froma set of measuredbackscattered
albedosis donebyusinga partial derivative inversionalgorithmthat was
describedby Schneideret al. (1981). Theoptimumstatistical conceptsof
Rodgers(1976)areusedin the algorithm. Becauseof thewidth of the
contributionfunctions,there is a limit to the altitude resolutionthat can
beobtainedin the retrievedprofile. Theinversionusesa-prlorl information
in the formof climatologicalprofiles (asa functionof seasonandlatitude)
andanassociatedeovariancematrixcontainingstandarddeviationsand
expectedcorrelationsbetweenlayers. Total ozonecalculatedfromthe longer
wavelengthschannelsrepresentsa strongadditional constraint. A solution
profile is obtainedbyminimizingthe differencesbetweenthe observedand
calculatedalbedosandtotal ozone. Theconstraintsare imposedIn a
statistically optimummannerby including the full covariancematrixof
radianceerrors anderrors in estimatingthe a-priorl profile. Twoor three
iterations normallysuffice. It Is estimatedthat analtitude resolutionof
approximately8 kmis achievedin the retrievedprofiles. Thelimit to the
altitude resolutionfroman inversionis set bythe widthof the contribution
functions, the accuracyof the albedomeasurement,andthemagnitudeof the
off-diagonalelementsoEthe a-prlor[ covariancematrices.

TheSBUVmakes only daytime measurements since it uses backscattered

sunlight. Measurements are made continuously over a broad latitude range at a

spacing of 200 km along the orbit track and In longitude at the orbit spacing

- 26 ° (Fig. 6). The upper and lower altitude limits vary wlth season

depending on the Sun angle, but over the course of the year, the coverage is

from - 80°S to _ 80°N. As an example, Flg. 6 shows coverage for mld-January.

The estimated accuracy of ozone profile measurements is - 8 percent. The

precision Is estimated to be _ 8 percent.

( I ] I 1 ]
180°w 150°w 120 °w 90 °w 60°w 30°w 0 30°E 60°¢

LONGITUDE. DEG.

\\
_:_. _.

]
90°E 120°E 150_ I80°E

Fig. 6 - SB_ daily latitude versus longitude coverage for mld-January and a sun
elevation angle > I0°.
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Total ozone measurements made by the SBUV have been compared with those

from over 60 Dobson stations (Bhartla et al., 1984a). The result is that SBUV

is lower, on average, by about 8 percent and the standard deviation of the

differences is consistent with the estimates of 2 percent precision on each

instrument type.

With respect to comparisons of SBUV profiles, Bhartia et al. (1984b) have

compared the results with Umkehr and balloon ozonesonde information. The

biases are generally less than 10 percent, but are functions of layer height

and latitude. The standard deviation of the differences between SBUV and in

situ measurements is found to be better than 8 percent for pressures between 1

and 64 mbar and better than 15 percent from 64 to 253 mbar.

The biases between SBUV and the ground-based observations, discussed

above, are believed to be largely due to inconststences in the ozone

absorption cross sections used for the various measurement systems. This

comparison has recently been reexamined using data from SBUV obtained with the

new absorption coefficients dertved by Bass and Paur (private _ommu_leation).

This study has resulted in a recommendation by the International Ozone

Commission that the new absorption data be used for reduction of satellite

data.

Solar Mesosphere Explorer Satellite (SME)

Instruments on the Solar Mesosphere Explorer have been used to measure

the ozone density in the Earth's atmosphere from about 1.0 to 0.001 mb and the

NO 2 density from about I0.0 to 2.0 mb starting January i, 1982, until the

present. A full description of the mission objectives can be found in Thomas

et al. (1980) and Barth et al. (1983). In this report, we present ozone data

for all of 1982 and NO 2 data for the first 3 months of 1982.

The three instruments involved are spectrometers; one operating in the

ultraviolet (UVS), one in the visible (VS), and one in the infrared (IRS).

The UVS and the IRS measure ozone and the VS measures NO 2. Altitude coverage

for ozone is from _ 50 km to 90 km and for NO2, it is from 20 km to about 60

km. The vertical resolution of the measurements is 3.5 km, and the latitude

coverage is from 85°S to 85°N.

Instrument descriptions, data analysis techniques, and early result_ have

been published for each instrument: For the UVS see Rusch et al. (1984); for

the IRS see Thomas et al. (1984); and for the VS see Mount et al. (1984).

All atmospheric instruments on SME take data in the limb scanning mode.

The satellite spins once in 12 seconds and the forward llmb is sampled once

each spin as the spin axis is perpendicular to the orbital plane. The

satellite is in a near polar, Sun-synchronous orbit with the local time of the

ascending mode near 3 p.m. Data are collected daily in four orbits centered

in the _ 50°W and = 100°W range.

The UVS measures Raylelgh scattered sunlight at two wavelengths, one

where ozone efficiently absorbs (265 nm) and one where the ozone absorption is

less efficient (296.5 rim). The shape of the llmb profile of Raylelgh



18

scatteredintensity is determinedby the distribution of ozonein the
atmosphere.Theprofiles are invertedto producea profile of ozonemixing
ratio as a functionof pressurefrom1.0 mbto 0.i mb.

Theuncertaintiesin a single inversionof six mergedllmb profiles are
about18percentat all altitudes. About65percentof this uncertaintyis
dueto systematicerrorsandthe remainderto thestatistical uncertainties.
Thecompleteerror analysis is presentedin Ruschet al. (1984).

TheIRSmeasuresradiation fromtheO2(IAg)moleculesat 1.27_m
resulting fromthe photolysisof ozone. Aknowledgeof themechanismsof
02(iAg)productionandloss allowsthe ozonedensityto be inferred in the
1.0to 0.001mbregionof theatmosphere.Randomerrors varyfromabout4
percentat 1.0mbto about20percentat 0.001andsystematicerrors areabout
15percentat all pressures.Thecompleteerror analysisis givenin Thomas
et al. (1984).

NO2 is measuredby the VSusinga differential absorptiontechnique.The
Rayleighscatteredsignal is measuredas a functionof altitude at a wave-
lengthwhereNO2 absorptionis lowandat anothernearbywavelengthwhereit
is severaltimeslarger. TheNO2 densityis determinedbya comparisonof the
ratio of the intensities of the twowavelengthsmeasuredto that expectedif
noNO2 werepresent. Thetotal _MSerror varies from21percentat 28kmto
about60percentat 38km. _le completeerror analysisis givenin Mountet
al. (1984).

Satellite Data Description

All of the satellite data collected thus far for the time period of this

report are displayed in subsequent figures in terms of monthly zonal mean

pressure versus latitude cross sections or polar stereographic projections.

In some cases, seasonal means are presented to allow a better comparison to be

made with SAGE results, which are limited in coverage. The discussion which

follows is divided according to the parameter measured. Intercomparison of

results are discussed where data overlap occurs (i.e., temperature, 03, and

NO 2) and significant features of the plots are described.

Temperature

As already indicated, the focus of this paper is on constituents; but

since temperature is such a fundamental quantity needed in photochemical

studies and for numerous other reasons, monthly zonal mean cross sections and

the I0 mb polar stereographic projections are included in Figs. TI-TI4 for

LIMS and Figs. T15-T38 for SAMS. Both LIMS and SAMS temperatures have been

compared to many rocketsonde/rawlnsonde profiles (see Gille et al., 1984b and

Barnett and Corney, 1984). In addition, LIMS and SAMS results have been

extensively compared with each other and SSU satellite data, and with analyses

from the Berlin Free University, the U.S. National Meteorological Center

analyses, and the European Centre for Medium Range Forecasting. This work was

done by a Pre-MAP Working Group, PMP-I, which compared daily zonal means and
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polar stereographicprojectionsat variouspressurelevels. Resultswere
publishedin MAPHandbookNo. 12,July 1984(Rodgers,1984). In a second
workshopof the group,monthlyzonalmeansandpolarstereographicprojections
werecomparedusingsimilar datasourcesandtheseresultswill bepublished
in a future MAPhandbook(GroseandRodgers,[986). Theagreementbetween
LIMSandSAMSis excellentundermostconditions. Usually,the largest
differencesoccurin regionswheresharphorizontalandor vertical gradients
occursuchas in high latitude warmingsituations. Theworkinggroup
attributed this as beingprobablycausedby the vastdifferencesin vertical
resolutionof the twoexperimentsandthe fact that in the LIMSprocessing,
horizontalgradientswereaccountedfor to first orderin the retrieval,
whereastheywerenot includedin the SAMSprocessing._e conclusionwas
that overmostof the globeandmostof the time, thetwodatasetsagreeto
within a fewdegreesKelvin.

Variationsin monthlycrosssectionsshowtheexpectedfeaturesof the
_uldtropopauseandwarmstratopause.Thelatter featureoccursat aboutthe
I mblevel duringall monthsat virtually all latitudes. Themostnoticeable
exceptionis duringOctoberthroughJanuaryat high latitudes whenthe
stratopausemovesupto aboutthe 0.6 mblevel. Thesteepestlatitudinal
gradientin the stratopauseregionalwaysoccursin thewinter hemispherewith
temperaturedecreasingpoleward.Thereare transition periodsin April and
Augustwhengradientsare reduced.Maximumchangesoccur in June and

December. Warmest temperatures at the i mb level occur at high latitudes of

the summer hemisphere in accord with the other observations and theory which

predicts a mean flow from the summer to winter hemisphere. During December

and January, there is a wave-like temperature structure as a function of

latitude at the highest levels of the data which is not present at other

times. The month of February 1979 shows significant differences from previous

winter months due to occurrence of a major stratospheric warming. Note in

January the cold temperatures uorthward of about 60 ° which extend to the I0 mb

level. In February, there are major changes from the January pattern and the

temperature has increased by 20 ° K in this region. Significant changes are

also seen in the polar stereographic projections.

Ozone (0_)

Ozone was measured by four experiments for the time period covered by

this report. These included LIMS, SAGE, SBUV, and SME. The first three

experiments were operating simultaneously during February to May of 1979 while

SME was launched mnch later. Extensive comparisons with in situ and Umkehr

profiles have been done for LIMS, SAGE, and SBUV and reported on in the

literature (Remsberg et al., 1984; McCormick et al., 1985; and Bhartla et al.,

1984a). In addition, a preliminary effort has been made to intercompare data

from these experiments (Flelg et al., [984). One such comparison is shown in

Fig. O3-I for the March zonal mean LIMS and SBUV results and the 2-day zonal

mean for SAGE at 42°N. In this comparison, the LIMS and SBUV agree better

with each other than wit}, SAGE above about 4 mb with SAGE values being higher

than LLMS and SBUV. Below I0 mb, LIMS and SBUV data differ from SAGE values

by about the same amount but with opposite sign. The differences reach - 25

percent at the highest altitudes but are only 10-15 percent below the I0 mb

level. This is not a typical result, however, and in general, the agreement
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of the datafor the threeexperimentsis muchbetter. Evenin this case,
differencesamongthe results arewell within the error barsof the individual
datasets. Therehavenot beenenoughdetailedanalysesdoneat this point to
drawconclusionsconcerningpatternsof differencesin variousaltitude
ranges. This level of agreementis consideredto beverygoodin viewof the
vastly different measurementapproaches,i.e., thermalemission,solar
occultation,andsolar backscatterobservations.Therehasbeensomelimited
reprocesslngof SBUVdatausingnewUVabsorptioncoefficients (Bhartla,
private communication,1985)but therehavenot beenenoughcomparisonsto
evaluatethe statistical slgnificaneeof changes.Thereappearsto bevery
little differencein the results exceptat loweraltitudes wherethe SBUVnow
agreesbetter with SAGEresults thandoesLIMS. Final judgmenton the new
SBUVdatamustawaita moredetailedandcareful study.

Onlyvery limited comparisonshavebeenperformedwith SMEresults in the
regionfrom1 mbto 0.I mb_lere LIMSandSMEdataoverlap. At higherlevels,
the only satellite dataare fromSME.It is possibleto extendLIMSresults
higherwith specialradianceaveragingprocessing,but this hasnot yet been
done. A Januarycomparisonof zonalmeanlatitude variationsat 0.56mband
0.134mb(Fig. 03-2)showsgoodSME/LLMSagreement(within 15percent)at the
loweraltitude, but largediscrepanciesat 0.I mbwherethe LIMSvaluesare
higherthanSMEbyas muchasa factor of two. A recentstudybySolomonet
al. (1986)showsthat the 9.6 _mozonebandis not in local thermodynamic
equilibrium(LTE)at the higheraltitude andthat largeerrors occurif LTEis
assumedin the retrieval. Whenthe effect of non-LTEis accountedfor, the
agreementbetweenLIMSandSMEat 0.136mbis within the error barsof the two
experiments.This is particularly encouragingin light of the fact that LIMS
datawerecollectedin 1979,andSMEresults wereobtainedin 1982. This
suggeststhat thesmall interannualvariability in ozone,indicatedbySME
duringthe timeit hasbeenoperating,extendsto otheryearsaswell. There
still is a differencein shapeof the latitude variation at 0.136mbbetween
LIMSandSME,whichis not currently understood.A wave-likeoscillation in
temperaturewith latitude appearsin the satellite derivedtemperaturecross
sectionsfor DecemberandJanuaryandthe photochemicallyexpectedozone
oscillation accompanyingthe temperaturechangesis presentin bothLIMSand
SMEdatasets at 0.56mbbut is seenonly in LLMSat 0.134mb. Thetrue
causesfor thesedifferencesarenot knownat present,but theymaybe related
still to thenon-LTEeffect in LIMSresults. Monthlyzonalmeancross
sectionsandpolar stereographicprojectionsareshownin Figs. 03-3to 03-30
for LIMSandin Figs. 03-31to 03-86for SBUV.

Monthlyandseasonalzonalmeancrosssectionsareshownin Figs. 03-87
to 03-96for SAGEsunsetdata. All contourplots are in units of
parts-per-milllonbyvolume(ppmv),andall polar stereographlcprojections
are for the NorthernHemisphere.Asalreadynoted, the SAGEdatacoverageis
sparsein somemonthsbecauseof the occultationexperimentcoverage;and
since therewereonly sunsetdatatakenafter June,coveragewasevenless.
DuringthosemonthswhereSAGEdataareparticularly sparse,nocontourplots
are shown.For themonthswhereall threeexperiments(i.e. LIMS,SBUV,SAGE)
wereoperating,the generalcontourshapesaresimilar andthe samefeatures
are apparent. ThemaximumMarchmixing ratio occurs at about the I0 mb

level. At the Equator, the latitudinal gradients in each hemisphere are

similar, and the vertical gradients at various latitudes are comparable.
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Therearesomenoticeabledifferenceswhendetails areexamined.TheMarch
1979 maximum mixing ratio is about 10.2 ppmv for LIMS (Fig. 03-7), 10.7 ppmv

for SBUV (Fig. 03-35), and 11.5 ppmv for SAGE (Fig. 03-87). This is in accord

with zonal mean profile comparisons already discussed. There are also some

differences in contour shapes. The LIMS and SBUV 7 ppmv contours in April for

example (Figs. 03-8 and 03-36), extend to a higher southern latitude and

higher altitude. In August 1979 (Figs. 03-40 and 03-90), the SBUV and SAGE

latitudinal gradients are quite different in some altitude regions. In

general, the SBUV and LIMS contour shapes agree better with each other than

with SAGE. _is may be related to the sampling level associated with the

occ_11tation experiment. There are, however, some important LIMS/SBUV

differences. Perhaps the most significant points to note are the differences

in January and February contours (Figs. 03-5 and 03-6 for LIMS and 03-33 and

03-34 for SBUV). It should be recalled that February was a month when there

was a major stratospheric warming. Note first that in January, the maximum

mixing ratio levels occur in the same location for the two experiments but the

'...._ are _e_=-_ by =Imn=e P nnmw q_ rnn_n,,r Qh_n_ _P lO mh and 60°S

are noticeably different and the 8 ppmv contour at the same level in the

Northerq Hemisphere extends to only _ 28°N for LIMS but to - 45°N for SBUV.

The most significant differences occur in February below the I0 mb level.

Here there is a large change in the LIMS poleward gradient at 60°N and 20 mb,

for example, and the "ozone hole" suggested by the contour fills in; but in

the SBUV results, there is essentially no change in the gradient. These

differences are made more evident in the I0 mb polar plot which shows the SBUV

ozone gradient (Fig. 03-62) remaining essentially constant to the pole whereas

the LIMS gradient changes significantly at about 30°N (Fig. 03-20). Downward

propagation associated with a warming event _11ch would bring higher ozone

levels downward is expected. It could be that the differences are caused by

the higher vertical resohltion provided by LIMS (_ 3 km versus _ 8 km for

SBUV). Also, at this time, there were sharp horizontal temperature gradients

present at high latitudes which are difficult to include in a limb experiment

retrieval. Thus, some LIMS ozone error is expected due to temperature errors

at the highest latitudes. _ere are noticeable LIMS/SBUV differences present

in horizontal ozone gradients revealed by polar stereographlc projections at

all levels and months. The reasons for the LIMS/SBUV differences are unclear

at present. Other features can be compared and differences noted, but in

general, the nature of the important differences for all months are

essentially characterized by these major points.

The ozone cross sections show the expected qualitative features of an

equatorial mid-stratosphere maximum in mixing ratio due to chemical activity

and downward and poleward slopes of the isolines In the lower stratosphere due

to the mean circulation. There is also a hemispheric assymetry present in the

2 mb to 7 mb range where elongated contours emanating in the Tropics extend

upward and poleward at certain times of year mostly in one hemisphere (see

e.g. LIMS Figs. 03-7 and 03-9). _lere is still some uncertainty about the

relative importance of photochemistry and transport in this region, but the

correlation with dry water vapor contours (e.g. Figs. 03-9 and CHN-31)

suggests that transport plays a definite role in controlling the distribution

in this region. All of the cross sections show rather low latitudinal

gradients above the 4 mb level. The SME data shown in Figs. 03-97 to O3-108

for the UV and 03-109 to 03-120 for the IR e_tend to a much higher altitude

than SBUV, LIMS, or SAGE, but they extend downward only to about I mb
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pressure. SMEresults showa rather uniformvertical slopeat all latitudes
andonly small latitudinal gradients. Sincethe climatologyandvariationsof
ozonewill be treated in depth by another MAP project, no more will be said

here.

Nitrogen Dioxide (NO_zl)

Nitrogen compounds arise in the stratosphere primarily from a sequence of

chemical reactions initiated by the reaction of nitrous oxide (N20)

transported up from the surface with atomic oxygen in an excited state

_(ID)]. Nitrogen dioxide results from the combination of nitric oxide (NO)

(which is an initial product of the N20 - O(ID) reaction) and ozone.

_lerefore, it is a central molecule in the chain of ozone destroying chemical

reactions, and it is of great importance to our understanding of ozone

temporal and spatial variations. At night, after NO has essentially all

converted to NO 2 through reaction with 03, NO 2 further reacts with 03 and NO 3

to form the radical N205. This reaction and subsequent photolysis which

dissociates N205 is highly temperature sensitive and altitude dependent.

Therefore, measurement of NO 2 variations provide some revealing, important,

and stringent tests to theory.

As noted earlier, NO 2 meas_irements have been obtained by three different

instruments; LIMS, SAGE, and SME, all of which use different experiment

approaches. The measurements represent a remarkable scientific achievement in

view of the importance of the data and the very low NO 2 mixing ratio which is

in the ppbv range. These three experiments, combined, provide measurements at

five different times of day, i.e., LIMS measured at approximately II:00 p.m.

and I:00 p.m. local time over a wide range of latitudes, SAGE made

measurements at sunrise and sunset, and SME conducted observations at - 3 p.m.

In addition, LIMS provided data at a variety of local times at high latitudes

where the terminator was crossed. Therefore, there is a wealth of data

available for conducting diurnal change and solar zenith angle dependent

investigations.

Since NO 2 varies significantly over the diurnal cycle, it is difficult to

Intercompare results from the three experiments. In addition, SME data were

collected about 3 years later in time. Therefore, the approach for

Intercomparing these data which we will take here is to briefly describe the

nature of the zonal mean cross sections for each experiment and include in the

discussion a mention of similarities and differences. _lere are a few cases

at high latitudes where LIMS and SAGE took data at essentially the same time

and these comparisons will be discussed. Finally, comparisons of results will

be made through the medium of a model.

The LIMS monthly zonal mean cross sections are shown in Figs. N-I to N-7

for daytime and in Figs. N-8 to N-14 for nighttime. A detailed discussion of

the "NO 2 climatology" as observed by LIMS is in preparation (Russell et al.,

1986). The low latitude boundary of stippled areas in the high latitudes

represents the region where the terminator is crossed and the measurement

period changes from day to night or vice versa. The cross-hatched area below

the 40 mb level reflects the fact that starting at about that level, an NO 2

"'climatology" was used according to the degree of molecular oxygen interfer-
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encein the NO2 channel. At the I00 mb level, for example, the result is

almost all climatology since under most circumstances at those levels,

emission by 02 made up nearly I00 percent of the radiance used for retrieval.

Thus, little NO 2 information was available. Several features in the data

stand obt. The contours tend to slope poleward and downward, and there is

evidence of upward motion at the Equator bringing N02 poor air into the

stratosphere. The diurnal differences are obvious with maximum daytime values

reaching - 6 ppbv and night values reaching - 19 ppbv. The altitude of the

peak mixing ratio occurs at the I0 mb level during the day and _ 5 mb at

night. In both time periods, the region of maximum NO 2 is biased toward the

Tropics and Southern Hemisphere through most of the mission. The daytime

contours become almost symmetrical about the Equator by May. Nighttime

results are never as symmetrical but are more so In May than previous months.

The distributions exhibit a layered structure in altitude and there are

distinct latitudinal gradients which are largest in the altitude region of the

peak mlxing ratio. The night distribution in January (Fig. N-tO) shows a

particularly sharp gradient which is indicative of the so called "Noxon

cliff," a term used to describe very rapid decreases in mixing ratio with

latitude which were first observed from the ground by Noxon (1979). This

feature has been carefully analyzed and is believed to be due to

chemistry-dynamlcs interactions associated with the polar vortex and NO 2

conversion to N205 (see e.g. Solomon and Garcia, 1983 and Callls et al.,

1983). _le gradient is not as steep during the day due to already depressed

NO 2 levels resulting from photoiysis. Examination of descending (nighttime)

polar stereographic projections at 3 mb in Figs. N-15 to N-17 for November

through January show that the NO 2 decrease occurs over a broad longitude

region. These maps were made using Kalman filtering. In doing this, since

NO 2 has large diurnal changes, it was assumed that the nighttime distribution

does not change over a 36-hour time period. Therefore, in analyzing higher

wave number features of the maps, this assumption should be considered. As a

minimum, the mapping allows a more accurate determination of the 36-hour zonal

mean distribution. Another feature of the data which is not obvious from the

contours is the effect of mesospherlc NO 2 on the stratosphere levels. Russell

et al. (1984c) performed special processing of LLMS data using radiance

averaging methods to show that the polar night mesosphe_e can lead to

significant increases in upper stratosphere NO 2 levels.

SAGE monthly zonal mean sunset pressure versus latitude cross sections

are shown in Figs. N-22 to N-28 and sunrise plots are shown in Figs. N-29 to

N-31. Seasonal sunset zonal means are shown in Figs. N-32 to N-34. The

mixing ratio patterns based on seasonal zonal means are similar to those for

LIMS. The NO 2 mixing ratio is a maximum In eqnatorial regions and decreases

toward the poles in both hemispheres. The maximum mixing ratio contour of 8

ppbv typically covers altitudes from - 32 km to 36 km and llke LIMS, there is

a bias in location toward the Southern l_mlsphere In winter months becoming

essentially symmetric about the Equator in spring and then the bias shifts

toward the Northern Hemisphere in summer and fall. SAGE also observes an NO 2

"cliff" type behavior in the winter hemisphere, which is somewhat steeper than

LIMS daytime latitude gradients and as expected, it is less than the nighttime

gradients. The behavior of the NO 2 column content at mid to high northern

latitudes during the local winter season has been investigated with the SAGE

observations (Chu and McCormick, 1986) and variations were found to be

strongly correlated with the large scale horizontal flow pattern.



24

DaytimeLIMSandSAGEdatafor winter andspringare comparedin Figs.
N-35andN-36for 31°N. TheLIMSresult_ are for JanuaryandMay,
respectively,andSAGEdataare 3-yearseasonalmeansfor winter andspring.
Therefore,thesecomparisonsaremorequalitative in nature,but nevertheless,
theyare instructive. Notethat in bothperiods, the profile shapesagree
verywell. LIMSis biasedlowrelative to SAGEbyabout15-20percentas
expectedbasedondiurnal changeconsiderations.Theerror barsof the two
datasets overlapin bothcasesand,therefore, lendcredenceto the combined
dataset.

SMEmonthlyzonalmeanNO2 crosssectionsareshownin Figs. N-37to
N-39. UnlikeLIMSandSAGE,thesecrosssectionsshowseveraldistinct
regionsof anNO2 maximumandthey showconsiderablevariability. Maximum
valuesof 12ppbvoccurat aboutthe i0 mblevel andthe regionsof maximum
NO2 persist throughtheperiodJanuaryto March. Part of the reasonfor the
differenceof the SMEcrosssectionscomparedto thosefromLIMSandSAGEmay
bedueto the fact that SMEcoversonly a small longituderangewhereasthe
otherexperimentscovera full 360° range. Thesignal contaminationcausedby
aerosolloadingassociatedwith eruptionof the E1Chichonvolcanoprevented
NO2 datacollection in later months.Thetendencyfor there to bea bias of
maximumNO2 towardthe summerhemispherethat wasseenin LIMSandSAGEdata
is not seenin SMEresults. Also, thereis no indication of polewardand
downwardslopingof contoursaswasthe casein LIMSandto somedegreein
SAGE.Thereis a movetowardssymmetryof the crosssectionas the summeris
approachedin agreementwith the other twodatasets.

Anotherwayto comparethesethreedatasets is throughuseof a time
dependentphotochemicalmodel. Solomonet al. (1986b)haveusedLIMSandSAGE
observationsof 03andtemperatureto studyexpectedNO2diurnal variations.
Thecalculationsusethe daytimeLIMSNO2 datato constrainthe amountof
NOx. In this case,the daytimeLIMSdataareassumedto beexact, but the
calculateddiurnal variationsaroundthis valuedependstrongly on
photochemistryandthereforeprovidea meansof comparingdaytimeLIMSdatato
SMEat 3 p.m., SAGEdataat sunriseandsunset,andLIMSdataat night. A
typical comparisonof this typefor the monthof Marchusingzonallyaveraged
results at the Equatorandthe I0 mblevel is shownin Fig. N-40. Thegeneral
conclusionis that the satellite results are in goodagreementwith one
anotherandwith the model.

In summary,the availablesatellite NO2 databaserevealsthat:

I. Thisgasis highly variablediurnally andwith altitude, latitude,
longitude,andtime.

2. There are strong photochemical-dynamics interactions associated with

winter conditions when a polar vortex is established. This leads to

formation of the "Noxon Cliff."

3. The mesosphere is a source for stratospheric NO 2 in the polar night

region.

4. Peak zonal mean mixing ratios of 18 ppbv at night and 8 ppbv in the

day occur in the Tropics mostly south of the Equator.
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5. The three satellite data sets are in good agreement with time

dependent photochemical theory.

Methane (CH4) , Nitrous Oxide (N?O), and Water Vapor (H20)

The S_MS satellite Instrument has yielded the first global observations

of the long-lived tracers, N20 and CH 4. These constituents are believed to be

produced exclusively in the troposphere, and their stratospheric distributions

therefore directly reflect a balance between transport processes and photo-

chemical destruction. If these chemical processes are well known, then the

observed distributions of these species can be used to critically evaluate our

understanding of stratospheric transport.

Chemical destruction of N20 takes place via photodissoclation and by

reaction with O(ID), a species produced in turn by ozone photolysls. Thus,

It_ !o_s rate is relatively well known_ although It should be noted that the

N20 photolysis cross section exhibits important temperature sensitivity as a

function of wavelength. The chemical destruction of methane takes place by

reaction with O(ID), C_ and particularly OH; this latter species has not yet

been measured directly in the lower stratosphere below about 30 km. Further,

the OH densities are tightly coupled to those of other poorly characterized

species such as HNO 4 and HOCk. These chemical uncertainties must be

considered in the i_terpretatlon of CH 4 and N90 as tracers.

The chemical loss of CH 4 results in the production of H20, a constituent

which has now been observed globally by LIMS and currently by SAGE II. H20 is

also long-lived at stratospheric altitudes and can, therefore, provide

information on transport. It also plays a strong role in the photochemistry

of stratospheric ozone through production of odd hydrogen radicals.

With these considerations in mind, we will briefly review what has been

learned from the satellite observations of these constituents and discuss

their general comparison to models. Monthly zonal mean cross sections for CH 4

are shown in Figs. CHN-I to CHN-12 and for N20 in Figs. CHN-13 to CHN-24.

The morphology of these first satellite observations of N20 aud CH 4 have

supported trends suggested by on the available limited balloon data. In

particular, the global distributions of these species exhibit a "vaulted"

structure, with much higher mixing ratios observed in the Tropics than at high

latitudes. Such structure suggests that most, if not all, of the air entering

the stratosphere from the N20 and CH 4 rich troposphere must enter in the

Tropics. The lower abundances observed at high latitudes probably reflect

downward transport of air photochemically depleted in these tracers. Model

calculations by Jones and Pyle (1984), _ithrie et al. (1984), Ko et al.

(1984), Solomon and Garcla (1984), Gray and Pyle (1985), and Solomon et al.

(1985a) are in general agreement with the SAMS observations In this respect.

The model by Jones and Pyle (1984) is a classical Eulerian model while

the other three cited above are formulated in the dlabatic or residual

Eulerian frameworks. Comparison of the SAMS observed tracer distributions to

the latter model calculations suggest mean vertical (Kzz) and horizontal

(Kyy) mixing (dispersion) coefficients of the order of I x 10 3 cm 2 s -I and

I-3 x 109 cm 2 s I, respectively, in fair _greement with theoretical estimates
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of the approximateglobally averagedstrengthof mixingby Kida(1983)and
Tung(1984). Onthe otherhand,MclntyreandPalmer(1983)andPlumband
Mahlman(1984)havesuggestedthat locally muchmorevigorousmixingmaybe
importantin tracer transportat particular pointsandtimes. Furti_er
analysisof SAMSobservationsandcomparisonto modelgradientsis likely to
yield importantinformationon the strengthof dispersiveprocesses.

Perhapsthe mostsurprisingaspectof the SAMSobservationsof N20and
CH4wasthe discoveryof "double-peaks"in bothconstituentsas a fnnctionof
latitude, particularly in spring. Thus,rather thanexhibiting a single
"vaulted"peaknearthe Equatoras is generallyfoundduringsolstice, the
springobservationstendto displaya doublemaxium,onenear20°Sandanother
nearperhapsIO°N. 'l_nesepeaksgenerallycoincidewith the occurrenceof
doubleminimain the LIMSH20distribution (seee.g. CHN-30andCHN-31).This
tendencyis not apparentin anyof the publishedtwo-dimensionalmodel
studies,but recentworkby Pyleandco-workers(Grayet al., 1984)suggests
that this featuremaybe relatedto thesemiannualoscillation of zonalwinds
in the tropical lowerstratosphere,possiblyforcedby Kelvinwaves.

In summary,then, the S_MSN20andCH4 datahavethusfar led to the
followinginterpretations:

I. Confirmation of balloon observations that suggest strong net upward

transport in the Tropics, and largely descending motion at

extra-troplcal latitudes (the "Brewer-Dobson") net circulation

pattern)

2. suggestion of relatively small globally averaged mixing (dispersion)

coefficients in the mean, and

3. indications of the importance of large scale circulation modulation

associated with the semiannual forcing of the tropical circulation.

Finally, we briefly discuss the LIMS observations of H20. Monthly zonal

mean descending node cross sections and polar stereographlc plots for the i0

mb level are shown in Figs. CHN-25 to CHN-38. H20 is of particular interest

because of balloon observations by Kley et al. (1979), that suggest that a

"hygropause" is found near 20 km in tile Tropics. These observations have

called into question the traditional belief (Brewer, 1949) that the

stratospheric water vapor content is limited by condensation at the tropical

tropopause (which is located substantially lower, near 16 km). Johnston and

Solomon (1979) and Danielsen (1982), suggested that transport via cumulus

towers that penetrate into the lower stratosphere might result in colder

temperatures (and lower water vapor mixing ratios) than those of the mean

tropical tropopause. Such processes could also result in an elevation of the

location of the mixing ratio minimum above the tropopause level. Thus, it

becomes important to ask what fraction of troposphere - stratosphere exchange

occurs via such towers. Newell and Gould-Stewart (1981) suggested that

preferentially enhanced transport may occur over Micronesia during the monsoon

season.

The LIMS observations of H20 have been discussed by Remsberg et al.

(1984) and a more detailed presentation of "climatology of H20" as seen by
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LIMSis in preparation(Remsberget al., 1986). Thesedatadoindeeddisplay
a hygropause,mostpronouncedin the Tropics,wherethe observedwatervapor
minimumis about2-2.5ppmv. Interestingly, however,the results showlittle
longitudinalvariability in the Tropicsevenduringthe monsoonseason.This
suggeststhat large-scaleupwardtransportof watervapormaybe importantin
addition to localizedconvection,or the effects of localizedconvectionas
viewedby LIMSareblurred, either byreal atmosphericmixingor becauseof
the field of viewof the llmb-soundlngexperiment.It is also conceivable
that somedetail is lost dueto thesmoothingeffectsof the Kalmanfiltering
process.

Remsberget al. (1984)also examinedthe quantityR = ACHJAH20 and noted

that the observed increase in H20 with respect to altitude is roughly

consistent with the observed decrease in CH 4 relative to the values obtained

near the tropical tropopause. While this method has merit for examining the

role of methane oxidation in the hydrogen budget of the stratosphere, there

are limitations. It implicitly assumes that air enters tlle stratosphere with

a constant hydrogen content or otherwise, transport processes would invalidate

the procedure. Also, since the quantity ACHJ_{20 is computed by taking

differences of mixing ratios of similar size, the technique is rather

sensitive to random measurement error. An alternate approach taken by Jones

et al. (1986) is to study the sum of total hydrogen which they consider as
A

H = 2x [CH_] + _20], where the _2] component has been neglected or can be

considered as a bias offset. This approach tends to be less sensitive to

measurement errors and does not depend o_ the history of air parcels. They
A

find an essentially uniform latitude versus altitude field for H of - 6 ppmv.
A

This consistency of the field suggest that H is conserved. Both approaches to

analyzing the data give a similar conclusion, namely that the important role

of CH_ oxidation in producing stratospheric water vapor seems reasonably well

established.

One of the most interesting aspects of the LIMS H20 observations is the

magnitude of the observed vertical gradients between about I00 and 50 mb In

high latitudes. In winter at middle and high latitudes, for example,

northward of _ 60°N, observed mixing ratios decrease abruptly from about 6.5

to 4.5 ppmv over this region. Because of the large abundances of H20 in the

upper troposphere, and because of the warm troposphere temperatures at middle

and high latitudes, such a gradient would be difficult to reconcile with much

appreciable net upward transport at these latitudes. As was shown by Brewer

(1949), gradients of approximately this magnitude are consistent with downward

velocities of the order of a few tenths cm s-I coupled with very slow vertical

mixing (Kzz = 103 cm 2 s-l). Also, there is evidence that these high H20

levels in the winter hemisphere lower stratosphere gradually decay as spring

and summer approach. This can be clearly seen by examining the region north

and south of 45 ° and below about 50 mb during the LIMS mission. Note that the

high levels exist in the north in November (CHN-25) and the south in May

(CHN-31).

Stordal et al. (1984) have presented a photochemical model employing a

diagnostically derived diabatic circulation and Kzz = I0 3 cm 2 s -I. This

model yields large vertical gradients in H20 near the upper troposphere -

lower stratosphere region at middle and high latitudes, in approximate
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agreementwith the LIMSobservations.Similar results havebeenobtainedby
GuthrieandJackman(private communication).Thesenumericalmodelresults
coupledwith the LIMSobservationsstronglysupportthe suggestionof Brewer
(1949)that the meanvertical profile of H20at extra-tropical latitudes is
maintainedprincipally bya net downwardtransportcoupledwith slowvertical
mixing,althoughthe possibility of locally importantinjection of H20at
particular points cannotbe ruledout.

TheH20observationshave,therefore, led to the followinginterpre-
tation:

Confirmationof the existenceof thehygropausein the Tropicsona
global scale,but nosuggestionof local exchangethat exceeds
large-scaleexchangenearthe tropical tropopause.

2, Quantitative proof that a significant increase in H20 mixing ratio

occurs with altitude in the middle and upper stratosphere, and the

increase is roughly consistent with the CH_ oxidation mechanism.

3. Vertical profiles in the lowest part of the stratosphere at

extratropical latitudes strongly suggest the importance of net

downward motion (a "Brewer-Dobson" llke circulation) and relatively

slow vertical mixing.

Nitric Acid (HNO3)

The LIMS instrument has provided the first global observations of HNO3; a

gas which is important as an end product and reservoir molecule in the chain

of nitrogen related photochemical reactions that destroy ozone. Formation of

nitric acid in the sunlit atmosphere takes place primarily through the
reaction

NO 2 + OH + M ÷ HNO 3 + M

Nitric acid transport to the troposphere and subsequent rainout is

thought to be the primary mechanism for removal of NO x from the stratosphere

and, therefore, it plays a central role in the NO x photochemistry. Further,

its close link along with its precurser, NO2, to the critical hydroxol radical

(OH) makes HNO 3 an extremely important gas in the stratosphere.

Monthly zonal mean LIMS HNO 3 pressure versus latitude cross sections and

30 mb polar stereographie projections are shown in Figs. H-I to H-14. A

detailed discussion of "HNO 3 climatology" observed by LIMS is in prepartion

(Gille et al., 1986). _le zonal mean altitude versus latitude distribution of

HNO 3 is in general agreement with prior balloon and aircraft measurements

which show low values in the Tropics and higher values at high latitudes.

This picture is consistent with the idea of HNO 3 poor air entering the

stratosphere from the troposphere at low latitudes. The high latitude buildup

raises questions and at present is not adequately explained by theory,

especially in the winter hemisphere. The data show considerable latitudinal

variability during all months of the LIMS mission. There are persistently low

mixing ratios in the Tropics (- 2-3 ppbv) and high values in high winter

latitudes (12 ppbv in November at 84°N). This distribution is suggestive of a
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high latitude nighttimeHNO 3 source (Austin et al., 1986). Other features of

the data common to all periods is the downward slope of the contours toward

each pole, and a significant hemispheric asymmetry. Although it is almost

always present, the asymmetry changes during the LIMS mission with highest

mixing ratios switching from the Northern Hemisphere to the Southern

Hemisphere in May (Fig. H-7). There is essentially no asymmetry durlng

February and March (Figs. H-4 and H-5). Models (both 2-D and 3-D) tend to

show the HNO 3 downward slope with latitude rather well, but the asymmetry

remains a problem. Also, models tend to show the HNO 3 peak mixing ratio

occurring at a higher altitude (- 10 mb) than the 40 mb level shown by LIMS

data.

It is interesting to note HNO 3 variations during the major sudden warming

event of 1979. This warming, which occurred in late February and resulted in

the main polar vortex splitting into two vortices, was preceded by a minor

disturbance in late January. Thus, there was significant dynamical activity

during th[s time. Figures H-IO and H-It show HNO 3 polar stereographlc

projections on the 30 mb surface before and during the warming. It appears

that the HNO 3 mixing rat[o was conserved when the main polar vortex split with

some of the gas being entrained in each resulting vortex. This can be seen by

stsdy of the 8 ppbv, 9 ppbv, and I0 ppbv contours in both periods. Note that

the 8 ppbv contour is essentially unchanged, but the 9 ppbv contour shape has

significantly changed to conform to regions of low temperatures associated

with the two vortices, and the |0 ppbv contour has disappeared in February. A

similar interpretation has been made for aerosols during the same event

(McCormick et al., 1983). This picture of dynamical control of HNO 3 is

reinforced by the strong correlations of HNO 3 and Ertel's potential vortlcity

calculated from LIMS temperatures (Grose and Russell, 1986). Potential

vort[city and HNO 3 are positively correlated.

As a further test of the quality of HNO 3 data, Pyle et al. (1983), Gille

et al. (1984a), and Callls et al. (1986) used LIMS NO 2 and HNO 3 to calculate

the _H] global distribution. They calculated instantaneous _H] values with

no conslderatlon of the time required for photochemical equilibrium to be

reached. _le results from Pyle et al. (1983) which are typical are compared

to in situ data in Fig. H-15. Many of the [n sits measurements have been

crudely adjusted to high Sun values. In view of these points, the agreement

between derived and measured _H] is encosraging and suggests that the LIMS

NO 2 and HNO 3 data are of high quality. One point to note is the divergence of

the agreement above about 35 km altitude. This is due mostly to a bias in the

LIMS HNO 3 values arising from an instrument artifact which causes high HNO 3

radiances. The LIMS team noted this bias in the HN03 validation paper _ille

et al. (1984a)] and since then have confirmed the bias which is only about one

bit in size in the data stream. A study is underway to determine the best way

to correct the data.

In summary, the LIMS HNO 3 data show features that are consistent with

past balloon and aircraft data; they have been extensively validated, and they

show some characterlstlc_ which differ rather markedly from model resul_s.

Most notable o_ these are the altitude of peak mixing and the hemispheric

asymmetry. The data suggest that HNO 3 is under strong dynamical control as

expected from chemical time constants for HNO 3 formation and the known

mechanisms for HNO 3 removal from the stratosphere. The general features of

the distribution are:
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I. Lowmixingratios persist in the Tropics(- 2-4ppbv);

2. mixingratio contourswhichslopedownwardandpoleward;

3. an interhemispheric asymmetry with winter high latitude mixing ratios

that are - 50 percent higher than for the opposite hemisphere;

4. significant longitudinal variability;

5. HNO 3 features that correlate positively with Ertel potential

vorticlty, and

6. suggestion from the data that the HNO 3 source region is in the high

latitudes.

Carbon Monoxide (CO)

Carbon monoxide is of interest in the middle atmosphere primarily because

of its role as a tracer for study of transport. _lis is so because CO is

largely inert, and it is only in the mesosphere that its photochemical

lifetime becomes comparable to transport time scales. Ground-based

observations using microwave techniques (Clancy et al., 1984) and 2-D model

calcnlattons (Solomon et al., 1985b) suggest that CO mixing ratios are higher

in the winter mesosphere than in summer primarily because of downward

transport by the mean meridional circulation.

Details of the SAMS carbon monoxide measurement have been reported by

Murphy (1985). Although the random errors are high, the S&MS data reveal

marked variations in CO (Fig. C0-1). Note that the dotted line is the

a-priori profile used in the retrieval, and it is identical in all cases. The

most significant feature is that mixing ratios are very high in the mesosphere

during the Northern l_misphere winter in accord with ground-based observations

and model results. This effect is clearly seen in the retrievals for the

1978/79 and 1979/80 winters for 35°N to 70°N. There is a difference of well

over a factor of I0 between summer and winter mixing ratios at some levels.

This difference is far too large to be attributed to errors in the measure-

ments or the retrieval process. There is some evidence for a similar effect

in the Southern Hemisphere, at about 85 km (12 pressure scale heights), but

the most southerly latitude zone extends only to 50°S. The variations between

the remaining profiles are generally comparable with the level of errors on

the retrievals. The central latitude band shows a profile which exhibits

little variation between the data periods, and the mixing ratios are compar-

able with summertime values in the Northern and Southern Hemisphere zones.

Aerosols

Prior to the satellite measurements by the SAM II and SAGE instruments,

stratospheric aerosols were monitored primarily with either a lidar system

(McCormick et al., 1978), or in sltu devices onboard aircraft (Lem et al.,

1979), and balloons (Rosen, 1964). These measurements are generally

restricted to a single locality, and extrapolation of the results in order to
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describethe stratosphericaerosolona global scaleis verydifficult to do
satisfactorily. Also_the poorsampling(bothspatialandtemporal)of these
measurementsis iuadequatefor thestudyof special events such as volcanic

injections with their subsequent dispersion and decay.

SAM II and SAGE measurements have now provided us with a global picture

of the behavior of stratospheric aerosols. The seasonal variation at all

latitudes from the Tropics to the high polar region has been surveyed, baring

the nearly 3-year lifetime of the SAGE instrument, several volcanic injection

events with their dispersion and decay have been measured. Another example of

the usefulness of this new aerosol data base is the discovery of polar

stratospheric clouds (PSC's) by the SAM II instrument. This new data and the
°. I- J_vo_uanLc set have contributed _ ,=,_ _I to our_ignLL_uanL_y ni_derstandlng of

stratospheric aerosol formation mechanisms and their effects on the radiation

balance.

Monthly pressure versus ]atitude aerosol extinction ratio cross sections

from SAGE are shown in Figs. A-I to A-7. Seasonal means are shown in Figs.

A-8 through A-10. Extinction ratio is the ratio of aerosol extinction to

molecular extinction at 1 um wavelength. The data are consistent with the

idea of a tropical source for aerosols. Here, the extinction ratio is a

maximum and decreases poleward in both hemispheres. These data represent

near-background stratospheric aerosol conditions, since the last major

volcanic stratospheric enhancement occurred in 1974 after the eruption of

Volcon De Fuego (Hofmann and Rosen, i981), which was 5 years prior to the SAGE

launch.

The ability to observe volcanic injections of material into the

stratosphere by SAGE was first demonstrated during April 1979, when the La

Soufriere volcano on St. Vincent Island (13.3°N, 61.2°W) erupted several times

sending a small amount of material into the stratos@_ere. SAGE observations

shortly after the volcanic eruption indicated enhanced aerosol extinction at

about an altitude of 20 km at locations near the volcano and extending

northeast over the Atlantic Ocean and the western shore of Africa. About a 2

percent global enhancement was recorded (McCormick et al., 1982).

In addition to the observations of the La Sourfiere volcanic injection,

SAGE has observed at least flve other stratospheric volcanic injection events;

the Sierra Negra volcano (0.8°N, 91°W) which erupted in late November 1979,

the Mt. St. Helens volcano (46°N, 125°W) which erupted violently on May 18,

1980, the Ulawun volcano (5.0°S, 15[.3°E) which erupted on October 7, 1980,

the Alaid volcano (50.8°N, 155.5°E) which erupted on April 17, 1981, and the

Pagan volcano (18.1°N, [45.8°E) which erupted on May 15, 1981. All five

eruptions were accompanied by large amounts of volcanic materials (ash and

gas) injected into the stratosphere.

The polar stratospheric aerosol has been thoro_Lghly mapped by the SAM II

measurements. The time histories for ! year of stratospheric aerosols for the

Arctic and Antarctic regions are illustrated in Figs. A-ll and A-12 (McCormick

et al., 1981). Figure A-l|b shows isopleths of weekly averaged aerosol

extinction, as a function of altitude and time, for the Northern Hemisphere

for October 29, 1978, through October 27, 1979. The dashed quasl-horlzontal

llne near [0 km shows the position of the average tropopause for each week.

Fig_ire A-lie shows the corresponding isopleths of temperature in Kelvins.
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TheSAMII results haveindicatedthat theseasonalbehaviorof the
stratosphericaerosolin the twopolar regionsaresimilar andthat thereare
strongcorrelationswith temperature.In thewinter period, increasedaerosol
extinction is foundin bothhemispheres.Thelarge increasesin extinction
occurringduringperiodsof particularly cold temperaturesaremanifestations
of stratosphericcloudsthoughtto bemadetlp of ice crystals. Theseare
occasionallysightedin the arctic winter butare ubiquitousin the antarctic
winter. Towardthe endof winter, the aerosollayer descendsin bothpolar
regions,followedbya rapid ascentin early spring. Followingthis period,
the top of theaerosollayer falls steadily throughoutthe summerandstays
nearlyconstantthroughthe fall season. Interestingdynamicsareseenwhich
appearto beassociatedwith the polarvortex(McCormicket al., 1983;Kentet
al., 1985;andWangandMcCormick,1985).

Su_r_

We have shown, in this report, a series of plots that describe the state

of the stratosphere and to some degree, the mesosphere as revealed by

satellite observations. The pertinent instrument features, spatial and

temporal coverage, and details of accuracy and precision for the experiments

providing the data have been described. The main features of zonal mean cross

sections and polar stereographic projections have been noted and

intercomparisons have been discussed where a parameter was measured by more

than one experiment. It was not our attempt to be exhaustive in this or to

present detailed result_ of scientific investigations. The main purpose was

to collect the available data in one place and provide enough information on

limitations or cautions about the data so that they could be used in model

comparisons and science studies. Without a doubt, when these data are used,

numerous questions will arise that were not addressed here. In such cases,

the reader is encouraged to contact the experimenters for proper

clarification.
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Figure TZl - SANSmnthly zonal mean temperature cross section for July
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Ftgure T27 - _S temperature monthlyman polar $tereographt¢ projection at
10 Q for January 1979 (contour fnterval t$ 2.0"K).
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Ftgure 03-10 - LIMS ozone monthly mean polar stereographlc projection at 2 mb
for November 1978 (contour Interval ts 0.20 ppmv).
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Figure 03-11 - LIMS ozone monthly mean polar stereographlc projection at 2

for _ce_er 1978 (contour interval Is 0.20 ppmv).
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Ftgure 03-12 - LIMS ozone mnthly man polar $tereographt¢ projection at 2 Q
for January 1979 (contour tnterval ts 0.20 ppm).
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for December 1978 (contour Interval 15 0,5 ppmv).
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F|gure 03-19 - LIMS ozone monthly mean polar stereographtc projection at 10
mb for January 1979 (contour tnterval ts 0.5 ppmv).
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Figure 03-21 - LIMS ozone monthly mean polar stereographicprojection at I0
mb for March 1979 (contour interval is 0.5 ppmv).
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Figure 03-22 - LIMS ozone monthly mean polar stereographlc projection at 10
mb for April 1979 (contour interval is 0.5 ppmv).
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Figure 03-23 - LIMS ozone monthly mean polar stereographlcprojection at 10
for Nay Ig7g (contour Interval I$ 0.5 ppmv).
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Flgure 03-24 - LIMS ozone monthly mean polar stereographlc proJectlon at
for November 197B (contour Interval Is 0,2 ppmv).
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Figure 03-25 - LIMS ozone monthly mean polar stereographic projectlon at 30

mb for December 1978 (contour Interval Is 0,2 ppmv).
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Figure 03-26 - LIMS ozone monthly mean polar stereographic projection at 30

for January 1979 (contour Interval Is 0.2 ppmv).
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Figure 03-27 - LIMS ozone monthly mean polar stereographtc projection at 30

mb for February 1979 (contour tnterva] ts 0.2 ppmv).
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Ftgure 03-28 - LIMS ozone monthly mean polar stereographtc projection at 30
mb for March 1979 (contour tnterval ts 0.2 ppmv).
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Figure 03-30 - LIMS ozone monthly mean polar stereographic projection at

for Nay Ig7g (contour Interval is 0,2 ppmv).
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Ftgure 03-32 - SBUVmonthly zonal mean ozone cross sectton for December 1978
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Figure03-33- SBUVmonthlyzonalmeanozonecrosssectionfor January1979
(contourintervalis 1.0 ppmv).
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Ftgure 03-34 - SBUV monthly zonal mean ozone cross section for February 1979
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Figure 03-35 - SBUVmnthly zonal man ozone cross sectton for March 1979
(contour tnterval ts 1.0 ppmv),

I
90



112

10 2 I I I I
-,30 0 ,30 60

LATITUDE, deg

Figure 03-36 - SBUVmnthly zonal mean ozone cross sectJon for Aprtl
_979 (contour tnterval _s 1.0 ppmv).
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Figure 03-39 - SSUVmonthly zonal mean ozone cross section for July 1979
(contour interval ts 1.0 ppmv).
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Figure 03-40 - SBUV monthly zonal mean ozone cross sectton for August 1979

(contour tnterval ts 1.0 ppmv).
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Figure 03.41 . SBUV monthly zonal mean ozone cross section for September 1979
(contour Interval is 1.0 ppmv).
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Figure 03-42 - SBUVmonthly zonal mean ozone cross section for October 1979
(contour Interval Is 1.0 ppmv).
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Figure 03-43 - SBUV monthly zonal mean ozone cross sectlon for November 1979
(contour tnterval Is 1.0 ppmv).
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Ftgure 03-44 - SSUVmonthly zonal mean ozone cross sectton for December 1979
(contour tnterval ts 1.0 ppaw).
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Figure 03-45 - SBUV monthly mean ozone polar stereographic projection at 2

for November 1978 (contour interval is 0.2 ppmv),
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Figure 03-46 - SBUV monthly mean ozone polar stereographic projection at 2 n¢o

for December 1978 (contour interval is 0.2 ppmv).
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Figure 03-47 - SBUV monthly mean ozone polar stereographic projection at 2 mb

for January 1979 (contour interval ts 0.2 ppmv).
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Figure 03-48 - SBUV monthly mean ozone polar stereographlc projection at 2 mb

for February 1979 (contour Interval Is 0.2 ppmv).
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Figure 03-49 - SBUV mnthly man ozone polar stereographlc projection at 2 mb

for March ig7g (contour interval Is 0.2 ppmv).
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Figure 03-50 - SBUV month.ly mean ozone polar stereographtc projection at 2 mb "

for Aprtl 1979 (contour tnterval is 0.2 ppmv).
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Ftgure O3-S! - SBUV mnthly mean ozone polar stereographtc projection at 2 mb
for Nay 1979 (contour Interval ts 0.2 ppmv).
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Figure 03-52 - SBUV n_nthly _an ozone polar stereographlc projection at 2 mb
for June 1979 (contour tnterval ts 0.2 ppmv).
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Figure 03-53 - SBUV n_nthly man ozone polar steneographlc projection at 2 n_

for July Ig7g (contour Interval I$ 0.2 ppmv).
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Figure 03-54 - SBUV _thly mean oz_e polar stereographlc projection at 2

for August 197g (contour Interval Is 0.2 ppmv).
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Figure 03-55 - SBUV mnthly man ozone polar stereographlc projectlon at 2 mb
for September 1979 (contour interval Is 0.2 ppmv).
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Figure 03-56 - SBUV monthly mean ozone polar stereographlc proJectlon at E

for October Ig7g (contour interval Js O.Z ppmv).
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Figure 03-57 - SBUV mnth]y mean ozone po]ar stereographlc projectlon at 2

for November 1979 (contour Interva] Is 0.2 ppmv).
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Ftgure 03-58 - SBUV monthly mean ozone polar stereographtc projection at 2 mb
for December 1979 (contour tnterval ts 0.2 ppmv).
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Figure 03-59 - SBUV mOMthly mean ozone polar stereographic projection at 10

for November 1978 (contour interval is 0.5 ppmv).
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Ftgure 03-60 - SBUV monthly mean ozone polar stereographlc projection at 10 mb
for December !978 (contour interval ts 0.5 ppmv).
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Figure 03-61 - SBUV mnth]y mean ozone polar stereographlc projectlon at 10

for January 1979 (contour Interval Is 0.5 ppmv).
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Ftgure 03-62 - SBUV mnthly mean ozone polar stereographtc projection at 10 mb
for February 1979 (contour Interval ts 0.5 ppmv).
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Figure 03-63 - SBUV monthly mean ozone polar stereographic projection at I0 mb_

for March 1979 (contour interval is 0.5 ppmv).



140

o

0

90.00

H
10.

10.4

LQTITUDE O. TO 80.

Ftgure 03-64 - $BUV monthly mean ozone polar stereographlc projection at 10 mb
for Aprtl 1979 (contour tnterval Is 0.5 ppmv).
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Figure 03-6B - SBUV monthly mean ozone polar stereographlc projection at I0 mb
for May 1979 (contour Interval is 0.5 ppmv).
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Figure 03-66 - SBUV monthly mean ozone polar stereographlc projection at 10 mb
for June 1979 (contour interval ts 0.5 ppmv),
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Figure 03-87 - SBUV mnthly mean ozone polar stereographlc projection at I0

for July Ig7g (contour interval Is 0.5 ppmv),
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Figure 03-68 - SBUV ._onthly mean ozone polar stereographlc projection at I0 .I)

for August Ig7g (contour Interval Is 0.5 ppmv).
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Figure 03-69 - SBUV monthly mean ozone polar stereographlc projection at I0 mb
for September 1979 (contour interval is 0.5 ppmv).
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Flgure 03-70 - SBUV monthly mean ozone polar stereographlc projection at 10

for October 1979 (contour Interval Is 0.5 ppmv).
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Figure 03-71 - SBUV monthly mean ozone polar stereographlc proJectlon at I0 m

for November 1979 (contour Interval Is 0.5 ppmv).



148

90.00

o o
Q

Q

ZTO.O

LATITUDE O. TO GO.

Figure 03-72 - SBUV monthly mean ozone polar stereographlc projection at I0 #o

for December 1979 (contour Interval is 0.5 ppmv).
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Figure 03-73 - SBUV monthly mean ozone polar stereographlc proJectlon at 30 mb

for November 1978 (contour Interval Is 0.2 ppmv).
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Ffgure 03-74 - SBUV monthly mean ozone polar stereograph|c projection at 30 mb
for December 1978 (contour tnterva] ts 0.2 ppmv).
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Figure 03-75 - SBUV monthly mean ozone polar stereographlc projection at 30 nd)
for January 1979 (contour interval Is 0.2 ppmv),



152

90.00

0

$
0

B

o

Z'?O.0

LATITUDE O. TO 68.

Ftgure 03-76 - SBUV mnthly mean ozone polar stereographtc projection at 30 mb
for February 1979 (contour tnterval ts 0.2 ppmv).
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Ftgure 03-77 - SBUV monthly mean ozone polar stereograph4c projection at 30 mb
for March 1979 (contour tnterval ts 0.2 ppmv).
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Figure 03-78 - SBUV monthly mean ozone polar stereographic projection at 30mb
for Aprt1 1979 (contour tnterva] Is 0.2 ppmv).
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Figure 03-80 - SBUV n_nthly mean ozone polar stereographlc projection at 30 mb
for June 1979 (contour interval ts 0.2 ppmv).
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Figure 03-81 - SBUV n_nthly _an ozone polar stereographlc projection at 30

for July IgTg (contour Interval Is 0.2 ppmv).
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Figure 03-82 - SBUV monthly mean ozone polar stereographlc projection at 30 mb
for August 1979 (contour Interval is 0.2 ppmv).
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Figure 03-83 - SBUV monthly mean ozone polar stereographic projection at 30 mb

for September 1979 (contour interval is 0.2 ppmv).
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Figure 0344 - SBUV monthly mean ozone polar stereographlc projection at 30

for October 1g79 (contour Interval is 0,2 ppmv).
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Figure 03-85 - SBUV monthly mean ozone polar stereographtc projection at 30 mb

for November 1979 (contour interval is 0,2 ppmv).
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Figure 03-86 - SBUV monthly mean ozone polar stereographlc projectlon at 30 nfo

for December 1979 (contour Interval is 0.2 ppmv).
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Figure 03-88 . SAGE sunset monthly zonal mean ozone cross section for April
lg/g (contour interval ts 1.0 ppmv).
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Figure 03-90 - SAGEsunset monthly zonal mean ozone cross section for August
1979 (contour tnterval is 1.0 ppmv).
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Figure 03-91 - SAGE sunset monthly zonal mean ozone cross section for
September 1979 (contour Interval is 1.0 ppmv).



168

I0-_

__ 10 0
(3

..0

E

m"
rw

03
03
LLI
f'y

Q- 101

102

2 -

4.-

6-

8-

2-

4-

6-

8-

2-

4''--

6-

8-

-90
I

-60 -30 0 30 60

LATITUDE, deg

Figure 03-92 - SAGEsunset monthly zonal mean ozone cross section for October
1979 (contour tnterval ts 1.0 ppmv).
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Figure 03-93 - SAGE sunset monthly zonal mean ozone cross section for Oecember
1979 (contour tnterval is 1.0 ppmv).
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Figure 03-94 - SAGEseasonal sunset zonal mean ozone cross sectton for
Hatch, Aprtl, and Ray, 1979 (contour tnterval ts 1.0 ppmv).
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Ftgure 03-95 - SAGEseasonal sunset zonal mean ozone cross sectton for
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Figure 03-96 - SAGE seasonal sunset zonal mean ozone cross section for
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Figure 0s-97 - SMEmonthly zonal meanozonecross section for January 1982
obtained wtth the UV spectrometer (contour Interval ts 0.2
ppmv).
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Figure 03-98 - SME monthly zonal mean ozone cross section for February 1982
obtained with the U¥ spectrometer (contour interval is 0.2

ppmv ).
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Ftgure 03-99 - SMEmonthly zonal meanozonecross sectton for March 1982
obtained wtth the UV spectrometer (contour tnterval ts 0.2
ppmv).
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Figure 03-100 - SHE monthly zonal mean ozone cross section for April 1982
obtatned with the U¥ spectrometer (contour Interval is 0.2
pp.v).
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Ftgure 03-101 - SHEmnthly zonal mean ozone cross section for Hay 1982
obtained with the U¥ spectrometer (contour tnterval is 0.2
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Figure 03-102 - SHE monthly zonal mean ozone cross sect|on for June 1982
obtatned wtth the U¥ spectrometer (contour Interval ts 0.2
ppmv).
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Figure 03-103 - SME monthly zonal mean ozone cross section for July 1982
obtained wtth the UV spectrometer (contour Interval Is 0.2
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Figure 03-104 - SHE monthly zonal .man ozone cross section for August 1982
obtatned wtth the UY spectrometer (contour tnterval ts 0.2
ppmv).
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Figure 03-106 - _E mnthly zonal ban ozone cross sectton Mr _ber 1982
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Figure 03-I07 - SME monthly zonal mean ozone cross section for November 1982
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February 1979 (contour Interval Is 1.0 ppbv).
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Ftgure N-23 - SAGEsunset monthly zonal mean NO2 cross section for April
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Figure N-24 - SAGE sunset monthly zonal mean NO2 cross section for Ray 1979
(contour tnterval ts 1.0 ppbv).
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Figure N-25 - SAGEsunset monthly zonal mean NO2 cross section for August
1979 (contour tnterval Is 1.0 ppbv).
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Figure N-26 - SAGEsunset monthly zonal mean NO2 cross sect|on for September
1979 (contour tnterval ts 1.0 ppbv).

I
9O



223

k_
(3
r_

(/3
GO
Ld
f_
CL

10°

6

8

I0 _

8

102
-90

\
\
\
\

I I
-60 -30 0 3O 60

LATITUDE, deg

Figure N-27 - SAGE sunset Monthly Zonal Mean NO2 cross section for
October 1979 (contour interval is 1.0 ppbv).
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Ftgure N-28 - SAGE sunset monthly zonal mean NO2 cross sectton for
Oeceaber lg7g (contour tnterval ts 1.0 ppbv).
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Ftgure N-29 - SAGEsunrtse monthly zonal mean NO_cross section for Hatch
1979 (contour tnterva] ts 1.0 ppbv).
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Figure N-30 - SAGEsunrise monthly zonal man NO2 cross section for April
1979 (contour interval Is 1.0 ppbv).
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Ftgure N-33 - SAGEsunset seasona] zonal meanNO2 cross sectton for June,
July, and August 1979 (contour tnterval Is 1.0 ppbv).
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Figure N-34 - SAGE sunset seasonal zonal mean NO2 cross section for
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F{gure N-38 - SNE monthly zonal mean NO2 cross sectton for February 1982
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Ftgure N-39 - SMEmonthly zonal mean NO2 cross sectlon for March 1982
(contour Interval Is I.O ppbv).
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Figure CHN-1 - SARSmonthly zonal mean CH4 cross section for January 1979
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Figure CHN-2 - SANS monthly zonal mean CH4 cross section for February 1979
(contour Interval ts 0.10 ppmv).
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Figure CHN-5 - SANSmonthly zonal mean CH4 cross section for Nay 1979
(contour interval is 0.10 ppmv).
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Figure CHN-6 - SANS monthly zonal mean CH4 cross section for June 1979
(contour interval is 0.10 ppmv).
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Figure CHN-22 - SAMSmonthly zonal mean N20 cross section for October 1979
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Figure A-II - SAM II measurements in the Northern Hemisphere.

Data show isopleths of weekly averaged aerosol

extinction at 1.0 _m, where the date marked

on the horizontal axis is the first day of the

week to which the average value corresponds.

(a) Latitude of SAM II measurements; (b)

Aerosol extinction isopleths in units of 10 -5

km -I. Dashed line shows averaged tropopause

heights; (c) Corresponding temperature field

at the location of aerosol measurements.
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Data show isopleths of weekly averaged aerosol

extinction at 1.0 _m, where the date marked on
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(a) Latitude of SAM II measurements; (b)

Aerosol extinction isopleths in the units of
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tropopause height; (c) Corresponding tempera-
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was divided into two halves which were inter-
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